

Welcome to ai-minimization-toolkit’s documentation!

This project provides data minimization capabilities for any
scikit-learn model.

Getting started

Information regarding how to use this project.

User Guide

Narrative documentation.

API Documentation

API documentation.

Examples

A set of examples. It complements the User Guide.

Quick Start with the minimization toolkit

Download the minimization toolkit code:

Clone the ai-minimization-toolkit repository:

$ git clone https://github.com/IBM/ai-minimization-toolkit.git

Or download using pip:

pip install ai-minimization-toolkit==0.0.1

User guide: start minimizing your ML model

The GeneralizeToRepresentative class

The main class, minimization.GeneralizeToRepresentative, is a scikit-learn compatible Transformer, that receives an existing estimator and labeled training data, and learns the generalizations that can be applied to any newly collected data for analysis by the original model.

	at fit, the generalizations are learned from X and y;

	at transform, X will be transformed, using the generalizations learned during fit;

	fit_transform will both learn the generalizations and then apply them to X.

It is also possible to export the generalizations as feature ranges, for example to create forms for data collection.

The current implementation supports only numeric features, so any categorical features must be transformed to a numeric representation before using this class.

How to use GeneralizeToRepresentative

Start by training your machine learning model. In this example, we will use a sklearn.tree.DecisionTreeClassifier [https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier], but any scikit-learn model can be used. We will use the iris dataset in our example.

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

dataset = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.2)

base_est = DecisionTreeClassifier()
base_est.fit(X_train, y_train)

Now create the minimization.GeneralizeToRepresentative transformer and train it. Supply it with the original model and the desired target accuracy. The training process may receive the original labeled training data or the model’s predictions on the data.

predictions = base_est.predict(X_train)
gen = GeneralizeToRepresentative(base_est, target_accuracy=0.9)
gen.fit(X_train, predictions)

Now use the transformer to transform new data, for example the test data.

transformed = gen.transform(X_test)

The transformed data has the same columns and formats as the original data, so it can be used directly to derive predictions from the original model.

new_predictions = base_est.predict(transformed)

To export the resulting generalizations, retrieve the Transformer’s _generalize parameter.

generalizations = base_est._generalize

The returned object has the following structure:

{
 ranges:
 {
 list of (<feature name>: [<list of values>])
 },
 untouched: [<list of feature names>]
}

For example:

{
 ranges:
 {
 age: [21.5, 39.0, 51.0, 70.5],
 education-years: [8.0, 12.0, 14.5]
 },
 untouched: ["occupation", "marital-status"]
}

Where each value inside the range list represents a cutoff point. For example, for the age feature, the ranges in this example are: <21.5, 21.5-39.0, 39.0-51.0, 51.0-70.5, >70.5. The untouched list represents features that were not generalized, i.e., their values should remain unchanged.

ai-minimization-toolkit API

GeneralizeToRepresentative

	GeneralizeToRepresentative([estimator, …])

	A transformer that generalizes data to representative points.

minimization.GeneralizeToRepresentative

	
class minimization.GeneralizeToRepresentative(estimator=None, target_accuracy=0.998, features=None, cells=None)

	A transformer that generalizes data to representative points.

Learns data generalizations based on an original model’s predictions
and a target accuracy. Once the generalizations are learned, can
receive one or more data records and transform them to representative
points based on the learned generalization.

An alternative way to use the transformer is to supply cells and
features in init or set_params and those will be used to transform
data to representatives. In this case, fit must still be called but
there is no need to supply it with X and y, and there is no
need to supply an existing estimator to init.

In summary, either estimator and target_accuracy should be
supplied or cells and features should be supplied.

	Parameters

	
	estimatorestimator, optional

	The original model for which generalization is being performed.
Should be pre-fitted.

	target_accuracyfloat, optional

	The required accuracy when applying the base model to the
generalized data. Accuracy is measured relative to the original
accuracy of the model.

	featureslist of str, optional

	The feature names, in the order that they appear in the data.

	cellslist of object, optional

	The cells used to generalize records. Each cell must define a
range or subset of categories for each feature, as well as a
representative value for each feature.
This parameter should be used when instantiating a transformer
object without first fitting it.

	Attributes

	
	cells_list of object

	The cells used to generalize records, as learned when calling fit.

	ncp_float

	The NCP (information loss) score of the resulting generalization,
as measured on the training data.

	generalizations_object

	The generalizations that were learned (actual feature ranges).

	
__init__(self, estimator=None, target_accuracy=0.998, features=None, cells=None)

	Initialize self. See help(type(self)) for accurate signature.

	
fit(self, X=None, y=None)

	Learns the generalizations based on training data.

	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features), optional

	The training input samples.

	yarray-like, shape (n_samples,), optional

	The target values. An array of int.
This should contain the predictions of the original model on X.

	Returns

	
	X_transformedndarray, shape (n_samples, n_features)

	The array containing the representative values to which each record in
X is mapped.

	
fit_transform(self, X=None, y=None)

	Learns the generalizations based on training data, and applies them to the data.

	Parameters

	
	X{array-like, sparse matrix}, shape (n_samples, n_features), optional

	The training input samples.

	yarray-like, shape (n_samples,), optional

	The target values. An array of int.
This should contain the predictions of the original model on X.

	Returns

	
	selfobject

	Returns self.

	
get_params(self, deep=True)

	Get parameters for this estimator.

	Parameters

	
	deepboolean, optional

	If True, will return the parameters for this estimator and contained
subobjects that are estimators.

	Returns

	
	paramsmapping of string to any

	Parameter names mapped to their values.

	
set_params(self, **params)

	Set the parameters of this estimator.

	Returns

	
	selfobject

	Returns self.

	
transform(self, X)

	Transforms data records to representative points.

	Parameters

	
	X{array-like, sparse-matrix}, shape (n_samples, n_features)

	The input samples.

	Returns

	
	X_transformedndarray, shape (n_samples, n_features)

	The array containing the representative values to which each record in
X is mapped.

Index

 _
 | F
 | G
 | S
 | T

_

 	
 	__init__() (minimization.GeneralizeToRepresentative method)

F

 	
 	fit() (minimization.GeneralizeToRepresentative method)

 	
 	fit_transform() (minimization.GeneralizeToRepresentative method)

G

 	
 	GeneralizeToRepresentative (class in minimization)

 	
 	get_params() (minimization.GeneralizeToRepresentative method)

S

 	
 	set_params() (minimization.GeneralizeToRepresentative method)

T

 	
 	transform() (minimization.GeneralizeToRepresentative method)

 nav.xhtml

 Table of Contents

 		
 Welcome to ai-minimization-toolkit’s documentation!

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

